
Adam Mickiewicz University in Poznań
Faculty of Mathematics and Computer Science

Miłosz Kosobucki
index no. 329519

Modelling System of Karst Caves
for Computer Graphics

(Modelowanie systemu jaskiń krasowych dla grafiki komputerowej)

Master’s thesis
in Computer Science
written under supervision of
Wojciech Kowalewski PhD

Poznań, 2013

Oświadczenie
Ja, niżej podpisany Miłosz Kosobucki student Wydziału Matem-

atyki i Informatyki Uniwersytetu im. Adama Mickiewicza w Poznaniu
oświadczam, że przedkładaną pracę dyplomową pt.:

Modelling system of karst caves for computer graphics
(Modelowanie systemu jakiń krasowych dla grafiki komputerowej)
napisałem samodzielnie. Oznacza to, że przy pisaniu pracy, poza

niezbędnymi konsultacjami, nie korzystałem z pomocy innych osób, a
w szczególności nie zlecałem opracowania rozprawy lub jej części innym
osobom, ani nie odpisywałem tej rozprawy lub jej części od innych osób.

Oświadczam również, że egzemplarz pracy dyplomowej w formie
wydruku komputerowego jest zgodny z egzemplarzem pracy dyplo-
mowej w formie elektronicznej.

Jednocześnie przyjmuję do wiadomości, że gdyby powyższe oświad-
czenie okazało się nieprawdziwe, decyzja o wydaniu mi dyplomu zostanie
cofnięta.

. .

data

. .

podpis

1

Contents

Contents 3

1 Introduction 6
1.1 Structure of the thesis . 7

2 Karst and karstification process 9
2.1 Introduction . 9
2.2 Basics . 9

Definitions . 9
Elements of karst landscape 10

2.3 Overview of the karstification process 11
2.4 Limestone dissolution . 13
2.5 Formation of speleothems 14

3 Related work 15
3.1 Modelling karst aquifers . 15

Single fracture simulation 15
Two–dimensional simulations 16
Three–dimensional simulations 16

3.2 Visualisation techniques . 16
Surveying software . 18

4 OpenCL heterogenous programming platform 19
4.1 Introduction . 19

Beginnings of programmable GPUs 19
Early attempts at GPGPU 20
CUDA . 21
Inception of OpenCL 21

Specification . 22
4.2 Logical abstraction of computational resources 22

3

Contents

Platforms . 23
Devices . 23

4.3 Memory model . 24
Host–side memory model 25
Device–side memory model 26

4.4 Execution model . 27
Context . 27
Programs and Kernels . 28

Supplying arguments to kernels 28
Command queues . 29

Workgroups and threads 29
Events and device–side relaxed consistency 30
Typical execution flow . 30

4.5 Implementation on selected hardware 32
OpenCL on AMD FX–8150 Bulldozer CPU 32

Mapping to OpenCL logical hierarchy 32
Execution model . 33

OpenCL on NVIDIA GTX580 35
Architecture . 35
Mapping to OpenCL logical hierarchy 36
Execution model . 36
Pitfalls of OpenCL programming on GPU 38

5 Isosurface extraction with Marching Cubes 39
5.1 Definitions . 39
5.2 Rationale for isosurface rendering 40
5.3 Marching Cubes algorithm overview 40

History (Lorensen 2007) . 40
Algorithm description (Lorensen and Cline 1987a) 41

Cube indexing . 43
Emitting polygons 43

5.4 Implementation on GPU with OpenCL 44
Stages in GPU implementation 45

Voxel classification 45
Compacting . 46
Generating triangles 48

6 Programming project description 49
6.1 Introduction . 49

4

Contents

6.2 Architecture . 49
Blobber . 50
Mcblob . 50

6.3 Implementation details . 50
Metaballs . 50
Overview . 51
Blobber . 52

Placement of blobs 54
Mcblob . 54

Calculating density function 55
Generating geometry 56

Using blobber and mcblob together 56
6.4 Example outputs . 57

7 Conclusions and further work 60
7.1 Possible development of karstgen 60

Bibliography 62

5

Chapter 1

Introduction

Karst formations are ubiquitous in every continent of Earth. It’s esti-
mated that about 25% of Earth population depends on drinking water
obtained from karst aquifers (Ford and Williams 2007). With such pro-
found influence on human race, it is essential to know how these geo-
logical structures evolve and how they may react to human activity.

Various simulation models were developed that try to predict how
karst aquifers evolve in time, and how they react to changes in environ-
ment. These models are implemented in computer software and repre-
sent simulated karst structure as net of fractures.

These tools, being aimed at speleogenesis experts, present results of
calculations with simple plots. Programming project of this thesis called
karstgen provides solution for richer presentation of geometric structure
of modelled karst formation. It can take input data in format that is
similar to formats of files produced by simulation software and gener-
ate triangle mesh in two file formats, one of which is simple and popu-
lar textual file format supported by most three–dimensional modelling
software. Presentation in such program may be beneficial for better un-
derstanding of data or for later usage in e.g. video games.

Since karst evolution models usually simulate large datasets, karst-
gen uses GPU acceleration to speed–up mesh generation process.

6

1.1. Structure of the thesis

1.1 Structure of the thesis

Below is overview of each chapter along with description on how it
contributes to the thesis.

Chapter 2 – Karst and karstification process
This chapter introduces basic definitions related to karst landscape
forms used later in the work. Karstification process is presented
with basic overview of chemical reactions that drive it. Information
contained in this chapter provides rationale for the shape of karst
evolution simulation models presented in subsequent chapters.

Chapter 3 – Related work
References to various works relevant to the subject are presented
here. Brief overview of karst evolution models is presented what
explains some of the design decisions taken in the programming
project.

Several works related to rendering, rather than simulating, caved
terrains are also described.

Chapter 4 – OpenCL heterogeneous programming platform
Here, OpenCL is described. It’s a programming library, main-
tained by Khronos Group Inc., that lets programmers leverage di-
verse computational resources offered by modern computers in
standardized manner. OpenCL is extensively used by program-
ming project of this thesis so this introduction gives reader a back-
ground for understanding implementation details.

Chapter 5 – Isosurface extraction with Marching Cubes
In this chapter Marching Cubes algorithm that is used in pro-
gramming project is described. This algorithm extracts polygo-
nal meshes of isosurfaces from three–dimensional scalar functions.
GPU–accelerated variant used in project is also described.

Chapter 6 – Programming project description
This chapter describes features and architecture of programming
project, as well as some more in–depth technical details of the im-
plementation.

Chapter 7 – Conclusions and further work
Final chapter of the thesis summarizes results of the programming

7

1.1. Structure of the thesis

project. Possible use cases are presented. Potential new areas of
improvement and further development are discussed as well.

8

Chapter 2

Karst and karstification process

2.1 Introduction

This chapter will briefly describe karst and processes that govern the de-
velopment of karst caves. First, basic definitions are introduced followed
by description of elements of karst landscape and formations. Next, a
high level overview of the karstification process is presented along with
chemical reactions in limestone aquifers that are essential in formation
of caves. Process and chemistry of speleothems formation is described
at the end of the chapter.

2.2 Basics

Definitions

Karstification is not a strictly defined term. Depending on context it
may mean all forms of corrosion of soluble rocks or it may encom-
pass whole range of processes that lead to devolopment of karst
formations.

Usually karstification means a landscape forming process that con-
sists of dissolution of various kinds of bedrock. The most common
kinds of solutes are limestone, dolomite, and gypsum (Field 2002).
However, given right conditions even some weathering–resistant
rocks like quartzite may be subject to karstification (Migoń 2010).

Although chemical dissolution is the main driving force behind
karstification, mechanical forces may also play a role in the fi-

9

2.2. Basics

nal looks of the karst landscape. That’s why sometimes, all these
forces together are put under the umbrella term of karstification.

Karst terrain formation developed through the means of karstification.
The origin of the term is a German form of Slavic word kras or krš
meaning bleak, waterless place (Field 2002).

Karst cave hollow space in a karst structure that is large enough for
human to enter (Hill and Forti 1997)

Aquifer geological formation that is capable of holding large amounts
of water through porosity, and other empty spaces inside.

Recharge process of addition of water to an aquifer.

Elements of karst landscape

Karstification process may produce very interesting and varied land-
scape. Some of the prominent elements of karst landscapes seen in fig-
ure 2.1 are:

Sinkholes general term for closed depressions of various shapes.

Resurgences places where water that entered the aquifer is re–emerging
to the surface

Tunnels or corridors medium–sized passages connecting larger voids.

Shafts vertical or steeply inclined passages of varying sizes. Deepest
known shafts are up to half kilometre deep (Field 2002, p. 167).

Speleothems limestone formations built through calcium carbonate pre-
cipitation. Speleothems that hang down from the ceiling are called
stalactites and ones that are emerging from the floor are called sta-
lagmites. When stalactites and stalagmites merge, they form lime-
stone columns – not to be confused with pillars.

Pillars vertical columns of rock that are left when surrounding rock
material dissolves.

Ponors openings in bottom or sides of depressions through which water
emerges or into which it disappears. Partially or completely.

10

2.3. Overview of the karstification process

Figure 2.1: Karst landscape showing various features of karst aquifers.
Figure from book by Marshak 2007

2.3 Overview of the karstification process

The most important factor in karstification process is flow of solvent
through an underground aquifer. Since bedrock is subject to geologi-
cal processes, a net (sometimes called a matrix) of fractures of varying
diameter and shape is present in it. This solvent, usually water, flows
through this kind of net and reacts with rock in ways described later.

Such karst aquifer may be surrounded on its sides by an aquitard, a
substance that is impenetrable to water.

Water that enters the system may come from precipitation, rivers
or lakes. Inflow of water may happen through diffuse infiltration or
point infiltration. Diffuse infiltration happens on larger areas, covered
by small fractures whereas point infiltration requires a prominent frac-

11

2.3. Overview of the karstification process

Figure 2.2: Example of limestone karst aquifer. Figure from Golscheider
and Drew 2007

ture to be present in the aquifer that can take large amounts of water
from a river or lake.

Recharge water that comes to the karst aquifer from neighbouring
non-karst areas is called allogenic recharge. For example in figure 2.2 a
river flowing on the upper aquitard and entering the limestone aquifer
through the sinkhole is an allogenic recharge.

On the other hand, recharge water that flows directly to the karst
area e.g. by precipitation is called an autogenic recharge

Water that flows through the aquifer reacts chemically with walls of
the fractures widening them through dissolution. After going through
the aquifer, water reemerges at lower level through emerging springs or
resurgences.

There are also cases of ground formation resulting from human ac-
tivity. Although not truly a karst process, a sinkhole that opened in 2010
in city of Guatemala was a result of combination of loose ground made
of volcanic ash and inadequate draining system, that couldn’t dissi-
pate large amounts of water brought by tropical storm Agatha (Fletcher
2010).

12

2.4. Limestone dissolution

2.4 Limestone dissolution

Chemical reactions that take place during the karstification process will
be shown for limestone aquifers. Following description is taken form
Dreybrodt and Gabrovšek 2002 which is based on Plummer, Wigley,
and Parkhurst 1978.

With the pH of solution at about 7, limestone dissolves through the
following slow reaction:

H2O + CaCO3 Ca2 + CO2−
3 + H2O (2.1)

Unfortunately, given very weak soubility of calcium carbonate in wa-
ter1, limestone dissolution would be extremely slow.

However, as the rain passes throught the atmosphere, it’s picking
up carbon dioxide that gets dissolved in water. Also, top layer of an
aquifer, called epikarst, is usually covered by soil that is rich in substances
that contribute with more carbon dioxide. With this aquired CO2, small
amounts of carbonic acid are produced:

H2O + CO2 H+ + HCO−3 (2.2)

Above reaction delivers a proton that bonds with carbonate detached
during slow dissolution 2.1:

CO2−
3 + H+ HCO−3 (2.3)

Thanks to this, the ion activity product (CO2–
3) (Ca2+) is below the

solubility constant of calcite. Calcium bicarbonate2 produced during
this process has orders of magnitude better soulibility in water3 what
greatly enhances the rate of limestone dissolution.

Equations (2.1) to (2.3) can be summed up with the following single
equation:

CaCO3 + H2O + CO2 Ca2+ + 2 HCO−3 (2.4)

1Only about 0.0013 g/100 mL in 25◦C according to Aylward and Findlay 2008
2Ca(HCO3)2
316.6 g/100 mL in 20◦C according to Aylward and Findlay 2008

13

2.5. Formation of speleothems

2.5 Formation of speleothems

Speleothems are mineral deposits of various kind that form in a process
reverse to dissolution. When water rich in calcium bicarbonate leaves
small fissures in the aquifer and enters big, hollow areas, its pressure
lowers and causes CO2–degassing that is the major factor in precipita-
tion of calcium carbonate on the surfaces of caves.

Loss of carbon dioxide leads to supersaturation in the solution reac-
tion that is directly reverse to reaction 2.4 (Fairchild and Baker 2012):

Ca2+ + 2 HCO−3 CaCO3 + H2O + CO2 (2.5)

Water evaporation plays marginal role in speleothem formation, what
was shown by Holland, Kirsipu, and Oxburgh 1964.

14

Chapter 3

Related work

This chapter presents references to research work in domain of mod-
elling processes governing evolution of karst aquifers along with small
summaries. This description will be helpful in explaining design de-
cisions made in programming project, especially in area of input data
formats.

Some visualisation techniques used previously for caved terrains in
various contexts will also be presented.

3.1 Modelling karst aquifers

As karst aquifers contain network of fractures (see chapter 2) a simula-
tion of flow and chemical reactions in single fracture is the basic building
block of presented models.

These fractures are connected to form larger, two or three–dimensional
networks, that represent whole conduits.

First attempts to describe processes taking place during evolution of
karst aquifers with numerical models took place in early 1980’s (Hiller
2013, p. 3). Buhmann and Dreybrodt 1985a developed numerical model
for ternary chemical system (CaCO3–CO2–H2O) in open systems (where
CO2 is exchanged with atmosphere) and for closed ones (Buhmann and
Dreybrodt 1985b).

Single fracture simulation

With these dissolution models in place, several models of single conduit
simulation were presented (Hiller 2013, p. 4).

15

3.2. Visualisation techniques

Single fracture is modelled as a circular conduit in the intersection of
fissure and bedding plane (Kaufmann 2009) or as a space between two
parallel walls of rock separated by aperture of some width (Dreybrodt
and Gabrovšek 2002).

Two–dimensional simulations

Single conduit one–dimensional models were later expanded into sec-
ond dimension by combining set of conduits into a connected network
(Hiller 2013, pp. 4–5). In such networks, fractures are organized into
uniform, regular structure.

Three–dimensional simulations

With more powerful computational resources, researchers started to look
into three–dimensional models that could finally provide insight into
evolution of real–life karst aquifers. Such models were proposed by
Annable 2003; Kaufmann 2003; Kaufmann, Romanov, and Hiller 2010.

Work by Hiller 2013 summarizes current state of three–dimensional
models. His thesis contains overview of modelling techniques and ap-
proaches. Simulation of real–live karst aquifer near dam–site is pre-
sented that matches observations. This shows validity of proposed mod-
els.

These three–dimensional models also store data as a uniform grid of
fractures. This fact heavily influenced the design of data structures used
throughout programming part of this thesis described in chapter 6.

3.2 Visualisation techniques

Rendering techniques that touched the issue of cave rendering never
tried to provide both physical accuracy and visually appealing graphics.

In Geiss 2007 a method for rendering procedural terrains is described
that in some circumstances can generate caved structures. Similar to pro-
gramming project of this thesis, presented method uses Marching Cubes
algorithm (see chapter 5) implemented on GPU1. Volume data is gen-
erated through carefully crafted density functions based on noise sam-
pling and various scalar functions that are easily computable in shaders.

1Albeit in shaders, not with any GPGPU solution

16

3.2. Visualisation techniques

Forstmann and Ohya 2005 proposed method of on–the–fly rendering
of procedural terrains that may also contain caves. It uses hierarchy of
nested clip–boxes for LOD2 calculation to reduce workload of the GPU.

Hiller 2013 developed KARSTTOOL – a MATLAB application that is
capable of plotting various parameters of three–dimensional fracture net
computed by running karst evolution simulation with KARSTAQUIFER
simulator introduced in Kaufmann 2009. This program doesn’t strive to
provide visually rich renders; it’s aimed at researchers that want to vi-
sualise various parameters of simulated karst aquifer like CO2 or HCO3
concentration. Screenshot of KARSTOOL application is presented be-
low.

Figure 3.1: Screenshot of KARSTTOOL application. Results tab is shown
that presents visualisation of simulation.

2Level of detail

17

3.2. Visualisation techniques

Surveying software

Research around cave rendering is also done for cave surveying soft-
ware. These specialized programs allow speleologists to capture data
about structure of caves by manual or device–assisted measurement
during exploration and plot the gathered data. Examples of open–
source programs of this kind are Therion3 and Survex4. More com-
prehensive list, albeit outdated, is available at British Cave Research
Association Cave Surveying Special Group (http://csg.bcra.org.uk/
software.html). Screenshot of 3D plot of graphic survey data from The-
rion is presented below.

Figure 3.2: 3D visualisation of cave survey data from Therion application

3http://therion.speleo.sk/index.php
4http://www.survex.com

18

http://csg.bcra.org.uk/software.html
http://csg.bcra.org.uk/software.html
http://therion.speleo.sk/index.php
http://www.survex.com

Chapter 4

OpenCL heterogenous
programming platform

This chapter will describe OpenCL. A framework for writing appli-
cations that utilize computational capabilities of heterogeneous hard-
ware environments offered by modern computers or embedded sys-
tems. Since the introduction of programmable pipeline in GPUs1 an op-
portunity appeared to use capabilities of these devices to offload highly
parallel, computationally intensive tasks from the main CPU2. OpenCL
isn’t however limited to GPUs. Multi–core processors can also be used
through its runtime without manual thread management.

OpenCL is used in programming project of this thesis described in
chapter 6. Metaballs and Marching Cubes algorithm are implemented
with it. Marching Cubes algorithm and its OpenCL implementation are
described in detail in chapter 5.

4.1 Introduction

This section is based on Kirk and Hwu 2010 and Gaster et al. 2012.

Beginnings of programmable GPUs

From early 1980s to late 1990s most graphic hardware was fixed–function.
Dedicated graphics units exposed predefined, fixed set of functions that

1Graphics Processing Unit
2Central Processing Unit

19

4.1. Introduction

were implemented in hardware or drivers. It wasn’t possible to write
custom code that would be executed on the GPU.

As the complexity of fixed–function APIs expanded, hardware ven-
dors implemented them with general purpose processors that could run
some limited instruction set on many execution units. This instruction
set was used to implement graphics APIs like OpenGL or DirectX.

In 2001 NVIDIA released GeForce 3 graphics card that exposed this
internal instruction set to users of OpenGL and DirectX APIs. ATI tech-
nologies followed with Radeon 9700 that could also run programs sup-
plied by the user on the GPU. DirectX 8 and OpenGL introduced pro-
grammable vertex stage. With DirectX 9 another programmable stage
was introduced, the pixel shader3. At this point, vertex and pixel shaders
were implemented via separate chips in the GPU. In 2005, with release
of XBox 360 first unified architecture was introduced, on which vertex
and fragment shaders were run on the same processor.

Graphics processing, that these devices were build for, is very well
suited for parallelization. Vertex shader stage takes list of vertices as its
input and maps them onto the screen optionally defining colour of the
vertex. Each vertex is processed independently making it possible to
process many vertices at the same time.

Pixel shader stage receives position of the point and returns final
colour of the pixel. This also is done independently for each pixel.

Early attempts at GPGPU4

With the unification of computational resources in the GPUs they started
to resemble highly parallel computers. Researchers noted this fact, and
tried to harness enormous parallel performance of these devices for
workloads other than graphics.

GPUs of DirectX 9 era were still designed in graphics processing
in mind. Although there were programmable stages in the pipeline,
types of input and output parameters in each stage were severely lim-
ited. Moreover, the final result was generated as a pixel buffer, so the
programmer had to map outputs of his algorithm to 2D screen space
with pixel colour as output. Inputs to the pixel shader stage had to be
supplied by textures.

3Or fragment program in OpenGL terminology
4General Purpose GPU

20

4.1. Introduction

Even with these issues, researchers who managed to port their algo-
rithms to GPUs reported great performance benefits (Kipfer and West-
ermann 2005).

CUDA

When working on Tesla GPU architecture, engineers at NVIDIA real-
ized the potential in providing device’s resources in more approachable
way. Additional instructions and functionalities were added to the de-
vice. Among them, read and write operation with arbitrary offsets5,
synchronization barriers for groups of threads, atomic read/write oper-
ations. New parallel programming model was developed that defined
hierarchy of threads.

To expose all these features to programmers new C–like language
was created and named CUDA6.

CUDA is capable of operating without any DirectX or OpenGL con-
text. Device it’s run on doesn’t even have to be connected to any display
output. CUDA programs are usually inlined in larger C or C++ pro-
grams and are called kernels. Special compiler called nvcc is used to
compile kernel code. For more information about CUDA refer to official
CUDA website7.

Inception of OpenCL

On June 16th, 2008 Khronos Group announced formation of Compute
Working Group (CWG) that was tasked with establishing open standard
for programming heterogeneous CPU and GPU environments8. CWG
consisted of many hardware and software vendors interested in stan-
dardization of such API.

Compute Working Group adopted proposal of Apple Inc. that sub-
mitted programming interface called Open Compute Language (OpenCL).
Apple was already developing OpenCL for quite some time to have it
ready for its upcoming Mac OS X Snow Leopard release.

5Shaders could only write to predestined places in memory, reserved for pixel
output

6Compute Unified Device Architecture
7http://www.nvidia.com/object/cuda_home_new.html
8https://www.khronos.org/news/press/khronos_launches_heterogeneous_

computing_initiative

21

http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/news/press/khronos_launches_heterogeneous_computing_initiative
https://www.khronos.org/news/press/khronos_launches_heterogeneous_computing_initiative

4.2. Logical abstraction of computational resources

On December 9th, 2008 final specification of OpenCL 1.0 was re-
leased9. Releases of conforming implementations from hardware ven-
dors followed10.

Specification

OpenCL specification is maintained by the Khronos Group. It consists of
C API and Kernel language that is similar to C99. Khronos also releases
official C++ wrapper API11.

Unofficial bindings for various languages and frameworks also exist.
Among others:

• PyOpencl12 for Python

• JOCL13 for Java.

• fortrancl14 for Fortran

• gocl15 wrapper for C applications based on GObject

• QtOpenCL16 wrapper based on Qt library semantics.

4.2 Logical abstraction of computational
resources

OpenCL aims to be API that lets hardware manufacturers expose vari-
ous kinds of devices to the programmers in a consistent and abstracted
way. To fulfil this requirement OpenGL defines logical hierarchy of com-
putational resources. Hardware vendors map real hardware to this ab-
straction in their implementations of OpenCL.

9https://www.khronos.org/news/press/the_khronos_group_releases_
opencl_1.0_specification

10http://www.khronos.org/conformance/adopters/conformant-products/
#opencl

11This wrapper API is used in programming project of this thesis
12http://mathema.tician.de/software/pyopencl
13http://www.jocl.org/
14http://code.google.com/p/fortrancl/
15https://github.com/elima/gocl
16http://doc.qt.digia.com/opencl-snapshot/index.html

22

https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
http://www.khronos.org/conformance/adopters/conformant-products/#opencl
http://www.khronos.org/conformance/adopters/conformant-products/#opencl
http://mathema.tician.de/software/pyopencl
http://www.jocl.org/
http://code.google.com/p/fortrancl/
https://github.com/elima/gocl
http://doc.qt.digia.com/opencl-snapshot/index.html

4.2. Logical abstraction of computational resources

OpenCL defines one processor (host) that is coordinating execution
of OpenCL kernels on one or more devices. Host is executing functions
from C API portion of the specification. It’s responsible for discovering
available devices, setting up contexts for them, allocating memory on
host and devices, queuing execution of kernels and initiating transfer of
data between various memories.

Diagram of this logical structure is presented in Figure 4.1.

Platforms

On the top of the hierarchy there is a Platform. It is usually an implemen-
tation of OpenCL by a single vendor. To query list of platforms available
in the system function clGetPlatformIds() must be called twice. Once
with parameter platforms set to NULL to obtain number of platforms,
and second time, with platform parameter set to array that will fit num-
ber of cl_platform_id structures equal or greater than the number in
argument num_platforms retrieved on first invocation of this function17.

Note however, that OpenCL is usually loaded as a dynamic library
provided by vendor. These libraries will usually return only one plat-
form.

To address this problem Khronos Group introduced cl_khr_icd ex-
tension that will look for list of installed OpenCL ICDs or Installable
Client Drivers in place specific for given OS. If implementation sup-
ports this extension, new function clIcdGetPlatformIDsKHR() is avail-
able that will present to the user platforms from all vendors available
on the system. This extension also makes sure, that function calls with
OpenCL object created in certain platform will be routed to implemen-
tations in this platform.

Devices

Platform may contain one or more devices. Devices are units that actually
execute the kernel code. Device may map for example to single GPU or
CPU.

NVIDIA OpenCL implementation presents each GPU available in
the system as separate device. OpenCL from AMD besides presenting
GPUs also presents supported CPUs as devices.

17This pattern should be used for discovering other types of resources in OpenCL
as well

23

4.3. Memory model

Device is the last entity in hierarchy that has its distinct API object.
Further elements cannot be operated on, and are just abstract concepts
to which vendors map their hardware.

These elements are compute units which are comprised of processing
elements. Devices can be queried for number of compute units they
contain through clGetDeviceInfo() function.

Exact details of mapping are dependant on OpenCL vendor. Under-
lying architectures of GPUs, CPUs and DSPs18 can differ greatly even
within the same class of devices.

Specifics of implementation on selected devices supporting OpenCL
will be presented in section 4.5.

4.3 Memory model

OpenCL provides layer of abstraction on device memory. Depending on
the capabilities of given device, some of the memories described below
may be unavailable.

Below are descriptions of memories defined by OpenCL specifica-
tion. They are divided to Host–side and Device–side memories.

18Digital Singal Processors

Platform 1

Platform 0

Device N
Compute unit

P
E

P
E

P
E

P
E

P
E. . .Compute unit

P
E

P
E

P
E

P
E

P
E. . .Compute unit

P
E

P
E

P
E

P
E

P
E. . .

Device 1
Compute unit

P
E

P
E

P
E

P
E

P
E. . .Compute unit

P
E

P
E

P
E

P
E

P
E. . .Compute unit

P
E

P
E

P
E

P
E

P
E. . .

Device 0
Compute unit

P
E

P
E

P
E

P
E

P
E. . .Compute unit

P
E

P
E

P
E

P
E

P
E. . .Compute unit

P
E

P
E

P
E

P
E

P
E. . .

Figure 4.1: Logical partitioning of hardware in OpenCL

24

4.3. Memory model

Host–side memory model

This is the model from the perspective of code that runs on the host. The
one that executes OpenCL library functions. Three types of memory are
distinguishable in this context:

Host memory
Memory allocated by the host code with standard allocation tech-
niques like malloc(). It’s not managed by the OpenCL runtime.

Buffers
Objects that are handles for global or constant memory allocated
on host. Buffers are similar in nature to flat C arrays. They have
linear addressing, so pointer arithmetic is possible in kernel code.

Buffers differ however in one crucial point with host memory. Op-
erations on them are asynchronous. Functions like clEnqueue-
ReadBuffer() that transfer data between host and device return
immediately, and the transfer starts in the background. Event
mechanism may be used for synchronization (see section 4.4).

Images
Images are somewhat similar to buffers, but differ in several ways.
Unlike buffers, images can be multidimensional. They are not laid
flatly in memory, but in a way that preserves spatial locality of
points within the image19, so they cannot be adressed directly but
through sampling objects, that define access patterns to images.
They are also limited in terms of supported datatypes to ones that
are relevant in graphics; no arbitrary structures can be held in im-
ages.

Images are abstraction of texturing units available in GPU shaders.
Because of this heritage, images are not supported by every OpenCL
implementation.

19For example by Z–order mapping (Gaster et al. 2012, p. 111-113)

25

4.3. Memory model

Kernel

Workgroup

Local memory

Work-
item

Private

Work-
item

Private

Work-
item

Private

. . .

Workgroup

Local memory

Work-
item

Private

Work-
item

Private

Work-
item

Private

. . .

Workgroup

Local memory

Work-
item

Private

Work-
item

Private

Work-
item

Private

. . .

Global memory Constant memory

Kernel-wide
scope

Workgroup
scope

Work-item
scope

Figure 4.2: Device–side abstract memory model of OpenCL (Gaster et
al. 2012)

Device–side memory model

These are OpenCL memory types, as seen from kernel perspective.

Global memory
Kernel-wide memory that is visible to all compute units on the
device. It is the only memory that can be used for transferring
data between host and devices. This is also usually the slowest
type of memory on the device by raw throughput.

26

4.4. Execution model

Constant memory
Memory designated for data that is going to be accessed simulta-
neously by many threads. Its contents cannot change throughout
the lifetime of the kernel. If available it’s usually implemented
with specialized hardware and/or caching strategies.

Local memory
Special memory area that resembles software–controlled cache. This
area is valid only within a single workgroup (see section 4.4). It’s
expected to be much faster than global memory20, so it can be used
as a scratchpad area for threads in one workgroup.

It may be implemented e.g. as separate chip in Compute Unit.

Local memory can be declared for workgroup in two ways, either
dynamically, by setting kernel parameter prefixed with __local
to NULL with desired size parameter, or statically as an array in
kernel with the same prefix.

Private memory
Memory valid within a single thread. Every non-prefixed vari-
able and all function arguments that are not pointers land in this
memory. It may be implemented with registers21. If number of
registers is exceeded, they may be spilled to global memory, what
can have very detrimental impact on performance. Number of reg-
isters used by kernel must be thus carefully controlled.

Private memory is the fastest available type of memory. For GPUs
it’s usually orders of magnitude faster than global or local memory.

4.4 Execution model

This section will describe OpenCL objects that manage execution of pro-
grams on the device and stages of such execution.

Context

Context is a structure that coordinates communication between host and
devices and keeps information about memory objects.

20However it’s not guaranteed
21Execution on GPUs isn’t stack–based, so every variable is stored in very limited

number of registers

27

4.4. Execution model

It is created by providing list of devices to clCreateContext() func-
tion. Devices must all come from the same platform, as returned by
clGetDeviceIDs(). There is a convenience function clCreateContex-
FromType() that creates context from all devices of given type from one
platform (Munshi 2012).

Programs and Kernels

To execute kernel code on the device, it must be first provided to special-
ized compiler that translates human–readable source code to machine–
specific instructions.

Kernel code must be fed to clCreateProgramWithSource() function
in the form of pointer to character array. OpenCL implementation takes
this textual representation and translates it in runtime. It’s worth not-
ing, that OpenCL kernel code is provided to the library in the source
form. This may be not suitable for secret proprietary algorithms. For
this reason, with OpenCL 2.0 Provisional specification Khronos released
definition of common intermediate representation called SPIR22.

There is another function that creates program objects named
clCreateProgramWithBinary(). It takes binary representation of OpenCL
code and creates program object from it. This function however, is
highly device–specific. It can only be used for caching compiled pro-
grams the first time application is run so no compilation is needed dur-
ing subsequent runs.

After creating program object, it isn’t yet compiled. Compilation is
triggered by clBuildProgram() function.

One program object may have been compiled from a source string
containing many OpenCL kernels. Each function prefixed with __kernel
in such string may be used to create separate kernel object with clCreate-
Kernel() function by providing build program object and kernel func-
tion name, or with clCreateKernelsInProgram() function that creates
kernel objects from all kernel functions present in program object.

Supplying arguments to kernels

Since kernels aren’t normal host function, they aren’t invoked as such.
Because of that, arguments for kernels must be supplied in specific way.

22Standard Portable Intermediate Representation http://www.khronos.org/
registry/cl/specs/spir_spec-1.2-provisional.pdf

28

http://www.khronos.org/registry/cl/specs/spir_spec-1.2-provisional.pdf
http://www.khronos.org/registry/cl/specs/spir_spec-1.2-provisional.pdf

4.4. Execution model

Each argument must be set with separate call to function clSetKernel-
Arg(). This style of argument setting resembles the way arguments are
supplied to shaders in OpenGL or DirectX.

Command queues

With kernel arguments properly set up, it can be queued for execution
on the device with clEnqueueNDRangeKernel()23 function. Kernels are
scheduled for execution on command queues — special objects that are
tied to particular device and are used for management of tasks on this
device.

There may be many command queues created with single device24.
Conformant OpenCL implementation guarantees, that as long as these
command queues don’t use the same resources, like memories, pro-
grams and kernels, at the same time, no synchronization is needed. Oth-
erwise, special care must be taken to ensure consistency. Using shared
objects on many queues is described in Appendix A of the OpenCL
specification (Munshi 2012).

Workgroups and threads

Exactly how many threads are started when kernel is enqueued in com-
mand queue is determined by configuration of the execution. Threads
may be organized as regular 1D, 2D or 3D structure. Size of this struc-
ture for all threads is called global work size. This structure is further
divided into smaller packets called work-groups. Exactly how task is
divided into work–groups can be either specified by user or done im-
plicitly by the implementation.

If workgroup size is specified explicitly, global work size must be
evenly divisible by local work size in each dimension.

Threads within a work–group can be synchronized with barriers.
Also, local memory is shared by every thread in the work–group.

OpenCL specification doesn’t guarantee any order of execution of
work–groups in a single kernel invocation. Particularly, execution of
one work–group may be suspended while it waits for data from slow
global memory, and another one, i.e. one ready to perform calculations,
may start or resume execution.

23Enqueue N-dimensional range kernel
24For e.g. multiple application threads

29

4.4. Execution model

Events and device–side relaxed consistency

Every OpenCL function that could possibly block, is called asynchronously.
It schedules execution of operation in the command queue and imme-
diately returns.

Synchronization of such tasks is done with event objects which are
returned by all potentially blocking operations. Such objects can be
either waited for with clWaitForEvents() or be passed to other blocking
functions which in such case guarantee not to start their execution before
all events passed to them finish.

OpenCL specification also defines relaxed consistency memory model
(Gaster et al. 2012, pp. 114–115). Until the end of kernel execution, mem-
ory writes may not be visible to other work–items if fences are not used.

This gives following, three–point hierarchy of memory consistency:

• Memory operations are ordered predictably within single work–
item. They won’t be reordered by the compiler.

• For work–items within single work–group memory is guaranteed
to be consistent only at barriers

• For work–items from different work–groups there is no consis-
tency of memory guaranteed, there are however atomic integer
operations on global memory available.

This relaxed model is needed to make it possible to implement OpenCL
on wider variety of devices. Any stricter model would single out some
class of devices.

Typical execution flow

Applications usually follow common pattern when offloading compu-
tation to OpenCL devices. There are two main ways this can be done,
depending on whether results must be read back to the host memory or
not.

When results of the computation must go back to the device, execu-
tion usually has the following steps:

1. Query platforms available on the system and choose one of them
with clGetPlatformIDs() or clIcdGetPlatformIDsKHR()

2. Query devices available on chosen platform with clGetDeviceIDs()

30

4.4. Execution model

3. Create context from selected devices with clCreateContext()

4. Create command queue for each device in the context with clCreate-
CommandQueue()

5. Create program and kernel objects from kernel source code with
clCreateProgramWith[Source,Binary](), clBuildProgram() and
clCreateKernel()

6. Create memory objects with input data and transfer it from host
memory to the devices25 with clCreateBuffer() and clEnqueue-
WriteBuffer()

7. Set kernel parameters with clSetKernelArg().

8. Enqueue kernel(s) execution with clEnqueueNDRangeKernel()

9. Read back data with clEnqueueReadBuffer()

Since OpenCL is quite often implemented with GPUs, it may be used
to generate data later used for rendering. Results of computations of
e.g. fluid simulation (Kolb, Latta, and Rezk-Salama 2004) or particle sys-
tems26 don’t have to be transferred back to the host memory; they are
used for rendering frame of animation, and may be discarded, overwrit-
ten or used as input for next frame. For such use cases, two extensions
were developed:

• CL_KHR_gl_sharing for sharing memory objects with OpenGL

• cl_khr_d3d10_sharing for sharing memory objects with Microsoft
DirectX

With these extensions, round–trips between host and device memory
are unnecessary. Above steps are thus a bit different, because data is not
read back but is used as an input for rendering by graphics API.

25Actual transfer may not occur if CL_MEM_ALLOC_HOST_PTR flag is used when buffer
is created and host and device share the same memory. This is possible for example
on AMD hybrid APU (Accelerated Processing Unit) systems that share single memory

26http://software.intel.com/en-us/vcsource/samples/3d-fluid-simulation

31

http://software.intel.com/en-us/vcsource/samples/3d-fluid-simulation

4.5. Implementation on selected hardware

4.5 Implementation on selected hardware

In this section, implementations of OpenCL on two different types of
devices will be presented. One is an AMD Bulldozer CPU – an 8–core
general purpose x86 processor and the other one is NVIDIA GTX580
– a high–end consumer GPU. High–level hardware architecture of both
devices will be shown with mapping to OpenCL logical device hierarchy
(see section 4.2). Some specific considerations that must be taken when
designing OpenCL application for these devices will also be discussed.

OpenCL on AMD FX–8150 Bulldozer CPU

Bulldozer is a microarchitecture of AMD processors released on Septem-
ber 7, 201127. Described processor is AMD FX–8150, a high–end con-
sumer CPU with 8 x86 cores packed into 4 modules. Cores within single
module share FPU unit, instruction decoding and fetching mechanisms,
branch predictor, and 2MiB L2 data cache. Each core has its own 16KiB
L1 data cache. AMD Implementation of the OpenCL runtime for CPUs
is based on Gummaraju et al. 2010.

Entire processor is presented to the programmer as a single OpenCL
device28 By default, every core is used to perform computations. For
each core, one thread for dispatching work–groups is created what ef-
fectively creates pool of threads with one thread pinned to each core.

Mapping to OpenCL logical hierarchy

If not divided into subdevices, each core of Bulldozer CPU is considered
one OpenCL compute unit. Since CPU doesn’t have any controllable
cache, RAM is used for all kinds of OpenCL memories. However, special
measures are taken, to ensure that private memory of work–items and
local memory of work–groups is laid in a way that is optimal for cache
locality.

32

4.5. Implementation on selected hardware

2MiB
L2 cache

16KiB
L1 Data

cache

x86
core

16KiB
L1 Data

cache

x86
core

2MiB
L2 cache

16KiB
L1 Data

cache

x86
core

16KiB
L1 Data

cache

x86
core

2MiB
L2 cache

16KiB
L1 Data

cache

x86
core

16KiB
L1 Data

cache

x86
core

2MiB
L2 cache

16KiB
L1 Data

cache

x86
core

16KiB
L1 Data

cache

x86
core

8MiB L3 cache

Memory controller IO controller

nGiB DDR3 System memory

Figure 4.3: Block diagram of hardware architecture of AMD FX–8150
CPU. Device has 8 cores packed into 2–core logical modules sharing
FPU unit, 2MiB of L2 data cache, instruction fetching/decoding units
and branch predictor.

Execution model

Each core of the CPU executes work–groups assigned to it one after
another. Within each work–group, each work–item is executed serially
until barrier operation is reached or kernel is finished. When barriers
are reached, work–item execution is suspended, its local state is saved
through setjmp system call to be later restored with longjmp. Execution
then moves to the next work–item within the work–group.

AMD OpenCL runtime provides modified version of setjmp and
longjmp syscalls that work better with CPU branch predictor and main-

27http://www.amd.com/us/press-releases/Pages/amd-ships-bulldozer-
processors-2011sep7.aspx

28However with device fission mechanism introduced in OpenCL 1.2 (and earlier
with extension) it is possible to divide a device into subdevices based on e.g. memory
characteristics

33

4.5. Implementation on selected hardware

CPU Thread 0 CPU Thread 1 CPU Thread n-1

Work group 0
WI0 WI1 WI2 WI3

. . .

WIn

Work group 0
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Work group 1
WI0 WI1 WI2 WI3

. . .

WIn

Work group 1
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Work group n+1
WI0 WI1 WI2 WI3

. . .

WIn

Work group n+1
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Work group n
WI0 WI1 WI2 WI3

. . .

WIn

Work group n
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Work group 1
WI0 WI1 WI2 WI3

. . .

WIn

Work group 1
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Work group n+1
WI0 WI1 WI2 WI3

. . .

WIn

Work group n+1
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

. . .

. . .

. . .

. . .

Work group n-1
WI0 WI1 WI2 WI3

. . .

WIn

Work group n-1
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Work group 2n+1
WI0 WI1 WI2 WI3

. . .

WIn

Work group 2n+1
WI0 WI1 WI2 WI3

. . .

WIn

barrier(...);

Figure 4.4: Execution model of OpenCL on AMD FX–8150 CPU.

tain program stack alignment. This approach is faster than system–level
thread preemption because creating system threads is much more ex-
pensive than aforementioned calls.

Within each work–group vector operations from SSE29 and AVX30

extensions are heavily used to obtain instruction–level parallelism on
vector types offered by OpenCL language specification.

Worth mentioning is the fact, that main program code is executed on
the same processor as OpenCL kernels. Heavy calculations in the host
part of the application may severely decrease performance of OpenCL
computations.

29Streaming SIMD Extension
30Advanced Vector Extension

34

4.5. Implementation on selected hardware

OpenCL on NVIDIA GTX580

NVIDA GeForce GTX 580 is the most advanced graphic card in GeForce
series 500 lineup. It’s a consumer–oriented GPU aimed at users with
highest performance needs. GTX 580 is based on architecture called
Fermi and will be presented based on Gaster et al. 2012, pp. 59–61 and
whitepaper NVIDIA’s Next Generation CUDA Compute Architecture: Fermi
2009.

Architecture

GTX 580 contains 16 Compute Units called Symmetric Multiprocessors
(SMs). Each SM contains following elements (for graphical diagram see
Figure 4.5):

32 CUDA Cores
Compute units containing ALU31 for integer arithmetic and FPU32

for floating point operations conforming to IEEE 754–2008 stan-
dard. It also supports multiply–add and fused multiply–add op-
erations.

16 load/store units
These units calculate addresses for memory access. They provide
access to data for 16 threads per clock cycle.

4 SFUs
Special Function Units for execution of transcendental instructions
like sine, cosine, reciprocal and square root

2 Warp Schedulers
Thread scheduling units that choose 2 packs of 16 threads for con-
current execution.

Register file
Area of very fast memory, 128KiB in size33

Shared memory/L1 cache
64 KiB of fast memory configurable as 16KiB of shared memory

31Arithmetic Logic Unit
32Floating Point unit
33Or 215 32-bit elements

35

4.5. Implementation on selected hardware

and 48KiB of L1 cache or 48KiB of L1 cache and 16 KiB of shared
memory

These 16 SMs are accompanied by following units in the chip:

• 6 64-bit GDDR5 memory units forming 384-bit memory interface
that supports up to 6GiB of DRAM, 768KiB of L2 cache

• GigaThread engine for distributing blocks34 among SMs

• host communication interface35.

Mapping to OpenCL logical hierarchy

Single Fermi GPU is visible as one OpenCL device. SMs are equivalent
to Compute Units, and CUDA cores are mapped to Processing Elements.
GDDR5 DRAM implements global memory, per–SM shared memory is
used for OpenCL local memory, register file is used for private memory,
and constant memory is located on dedicated DRAM units with separate
cache. Images are implemented using texture memory, the same one
that is used for graphics processing with DirectX and OpenGL.

Execution model

When kernel is scheduled for execution on Fermi GPU it’s enqueued in
GigaThread engine that distributes work–groups among available SMs.

When work–group arrives at the SM, it’s further divided into units
of 32 threads called warps. At one cycle, two warps are selected that
go to each Warp Scheduler. Both Warp Schedulers issue one instruction
from each warp to one of following parts of SM:

• 16 CUDA cores36

• 16 Load/Store units

• 4 SFUs

Most of instructions in both warps can be issued independently, so
this dual–scheduling technique helps in achieving peak hardware uti-
lization.

34Or work–groups in OpenCL nomenclature
35PCI-Express bus
36In this case, these 16 threads form a half–warp

36

4.5. Implementation on selected hardware

Instruction cache
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32,768×32-bit)

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

SFU

SFU

SFU

SFU

Interconnect Network

64KiB Shared Memory / L1 Cache

Uniform Cache

Figure 4.5: High–level overview of elements forming Fermi SM

37

4.5. Implementation on selected hardware

Pitfalls of OpenCL programming on GPU

Execution model described in previous section clearly prefers execution
of the same instruction on many threads. NVIDIA calls this model SIMT
or „Single Instruction Multiple Thread“. When just one thread diverges
in code path through e.g. if statement, every possible code path must
be executed for each thread in a half–warp. That’s why kernels with
divergent code flows should be avoided.

Another problem is usage of registers. Since execution isn’t stack–
based like in x86 CPUs, every local variable must go to Register File on
SM that is rather small. When too many registers are used, either less
blocks will be able to be computed at the same time, or register spilling
mechanism that uses orders of magnitude slower global memory as a
backup location for overflowing variables will kick in. Both of these
possibilities may significantly reduce performance.

As mentioned before, execution of threads on GPU isn’t stack based.
All function calls in kernels are inlined. Therefore, algorithms that rely
on recursion with arbitrary depth may be impossible to implement with-
out deep modifications.

38

Chapter 5

Isosurface extraction with
Marching Cubes

This chapter will present a method of isosurface extraction that is later
used in programming project. First, basic definitions will be established
and rationale for generating graphics with volumetric data will be dis-
cussed. Next, brief history and high level overview of Marching Cubes
will be presented. Technical details will follow with description of im-
plementation on highly parallel GPGPU systems with OpenCL.

5.1 Definitions

Definition 1. Density function is a scalar function of the form R3 → R

or R2 → R that defines value of some magnitude in a continuous space.
An example of such function in 3D space is temperature defined in each
point in the space. Height on a flat map on the other hand is a density
function in 2D space.

Note that such defined density function doesn’t have any connection
to probability density function. It’s in fact a special kind of scalar field. This
definition however is commonly used in context of rendering isosurfaces
(Geiss 2007).

Definition 2. Isosurface is a surface in three-dimensional space that con-
sists of points that have the same value of density function called thresh-
old value. Points in domain with density function value smaller than
threshold value are considered to lie below the surface and points which
density function value larger than threshold value are considered to

39

5.2. Rationale for isosurface rendering

lie above the surface. Points with density function value equal to the
threshold are considered to lie exactly on the isosurface.

Definition 3. Isovalue is a threshold value of density function that forms
the isosurface.

5.2 Rationale for isosurface rendering

There are many applications which yield data as a density function.
Some of them are listed below:

CT1scan. Result of such scan is a set of 2D slices with each slice consist-
ing of array of scalar values (Lorensen and Cline 1987a).

Weather data Weather data, especially coming from weather models
consists of scalar values of various parameters (temperature, hu-
midity, etc.) on earth’s surface

Arbitrary mathematical function It’s often desirable to visualise math-
ematical function with multiple parameters on 2D and 3D plots.
For example for educational purposes.

Procedural models Surfaces expressed by density function may be a
source of visually interesting models that could be hard to model
by hand.

Interactive presentation of such data may be very helpful while work-
ing with these applications. Ability to rotate, zoom and scale such sur-
faces is beneficial to understanding the data since human sight appara-
tus is naturally well equipped to process 3D objects and images.

5.3 Marching Cubes algorithm overview

History (Lorensen 2007)

Marching Cubes algorithm was invented in 1984 by William E. Lorensen
and Harvey E. Cline. While being employed by General Electric they at-
tended a seminar by GE’s Medical Systems Business Group employee
Carl Crawford. Mr Crawford described capabilities of the upcoming

1Computer Tomography

40

5.3. Marching Cubes algorithm overview

rendering engine called Graphicon, that rendered using polygons. He
also challenged seminar attendees to find interesting usages for the de-
vice. Within a day Lorenson and Cline devised an algorithm that read
volumetric medical data (essentially a density function) and produced
triangle mesh representing isosurface.

General Electric submitted a patent application for the algorithm on
June 5, 1985, which was granted on December 1, 1987 (Lorensen and
Cline 1987b).

Partly due to existence of this patent, another algorithm called March-
ing Tetrahedra was invented to give graphics community another method
of isosurface extraction, that is not encumbered by patents. Marching
Tetrahedra also solves some ambiguities that are present in Marching
Cubes.

Patent on Marching Cubes algorithm expired in 2005.

Algorithm description (Lorensen and Cline 1987a)

Marching cubes algorithm divides space on which it operates into a
discrete lattice of cubes (interchangeably called voxels). For each cube,
density function value is retrieved for each vertex of the cube. Density
function may be calculated from the position of the vertex on the fly
if it’s defined as a mathematical function, or it may be extracted from
some external volumetric data source (e.g. result of CT scan).

Next, for each vertex of the cube it’s determined whether value at its
position is larger or smaller than requested isovalue. If the value on the
vertex is smaller vertex is below the surface. Otherwise it’s above it.

Being above or below the surface will be called the sign of the vertex.
If vertices on the ends of given cube’s edge are of different signs, than
it’s certain that the surface crosses the edge.

For each cube, there are 28 = 256 possible combinations of sings of
the vertices. Combination of these signs is called the index of this cube
(see Figure 5.2).

When the index of the cube is known, pre-generated LUTs2 are con-
sulted to determine how many polygons and in what configuration
should be emitted for this cube.

Original version of Marching Cubes algorithm divides all 256 pos-
sible combinations of vertices into 15 cases. These cases are presented

2Look-Up Tables

41

5.3. Marching Cubes algorithm overview

in Figure 5.1. Remaining combinations are derived from these cases
through applying symmetries, rotations, and switching all signs of cube
verices.

Another LUT is consulted that maps cube index to edge numbers on
which generated vertices will lie. Vertex is then emitted for each edge
that is crossed by the isosurface.

Process is repeated for all cubes in the lattice and emitted polygons
(possibly with normal vectors for lighting) are the output of the algo-
rithm.

Figure 5.1: All cases in traditional Marching cubes algorithm. Ver-
tices with density function above threshold value have black circles on
them. Symmetries, rotations, and complementary cases (with exception
of cases 0 and 255) were omitted for brevity.

42

5.3. Marching Cubes algorithm overview

Cube indexing

Operation on a single cube begins with evaluating density function on
each vertex of the cube.

Index of the cube is calculated through operation described under
Figure 5.2.

v1 e1 v2

e2

v3

e3v4

e4
v5 e5

v6

e6

v7e7v8

e8

e9
e10

e12
e11

Figure 5.2: Numbering of vertices and edges in Marching
Cubes. Cube index is derived by concatenation of bits: index =
v8|v7|v6|v5|v4|v3|v2|v1 where each vi is logical result (0 or 1) of op-
eration of comparing density function value at i-th vertex with threshold
value (value(i) > threshold).

Emitting polygons

When index of the cube is known, LUT is consulted that maps index to
list of edges on which vertex in given cube must be emitted.

Listing 5.1: Index to edge list LUT. Notice that for indices 0 and 255 no
geometry is emitted

1 unsigned char mcTriangleTable [256][16] = {
{255 , 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255} ,

43

5.4. Implementation on GPU with OpenCL

3 {0, 8, 3, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255} ,

...
5 {0, 3, 8, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255} ,
{255 , 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255}
7 };

For each edge on the list vertex is emitted between its two ends in
place proportional to the linear interpolation of density function at the
vertices.

Each three vertices form a polygon. In the listing above, value 255
marks an end of the list for given index.

Next, each polygon is saved in a list for later usage, or directly fed to
rendering device.

5.4 Implementation on GPU with OpenCL

Following implementation is based on example code from NVIDIA CUDA
SDK example3.

As described in section 5.3 each cube is processed by the algorithm
independently. This possibly makes this algorithm a good candidate for
massive parallelization offered by general purpose GPU programming.
There are however some obstacles to overcome.

First, LUTs used by the algorithm are obviously too big to fit into
registers. Reading them from global memory would also be problem-
atic, because they are accessed in a random manner, depending on cube
index. Tables could be copied to local memory for faster access, but the
cost of copying for each block could be substantial.

Another problem is storage of the output. It is not known beforehand
how many polygons will be emitted by each cube. With sequential im-
plementation it isn’t a problem because data generated by each cube
may be just appended to single result array. With many cubes being
processed at the same time, this approach will not work.

3http://docs.nvidia.com/cuda/cuda-samples/index.html#
marching-cubes-isosurfaces

44

http://docs.nvidia.com/cuda/cuda-samples/index.html#marching-cubes-isosurfaces
http://docs.nvidia.com/cuda/cuda-samples/index.html#marching-cubes-isosurfaces

5.4. Implementation on GPU with OpenCL

Stages in GPU implementation

Kernel execution is divided into the following stages:

1. voxel classification

2. compacting

3. triangle generation

All operations are performed on cube lattice flattened to 1D array.
Each stage of the execution will be described below.

Voxel classification

In this stage, all voxels are classified as to whether they will produce
any geometry or not, and how many vertices is given voxel going to
produce.

Results are written to two arrays: voxelOccupied which contains 1
if given voxel produces any geometry and 0 otherwise, and voxelVerts
that holds number of vertices produced by this voxel:

1 __kernel
void classifyVoxel (

3 __global uint *voxelVerts ,
__global uint * voxelOccupied ,

5 uint4 gridSize ,
float4 voxelSize ,

7 float isoValue ,
uint numVoxels ,

9 __read_only image2d_t numVertsTex)
{

11 uint i = get_global_id (0);
float4 cubeValues [8];

13 /* Here , values on each vertex of the voxel are
inserted into cubeValues array */

15 int cubeIndex = getCubeIndex (cubeValues , isoValue);
uint numVerts = read_imageui (numVertsTex ,

tableSampler , (int2)(cubeIndex , 0)).x;
17 if (i < numVoxels) {

voxelVerts [i] = numVerts ;
19 voxelOccupied [i] = (numVerts > 0);

}
21 }

45

5.4. Implementation on GPU with OpenCL

Note that additional lookup table (numVertsTex) that maps cube index
to number of vertices it produces is used. This LUT is accessed as a
texture.4

Index of the cube is calculated as described in Figure 5.2:

1 int getCubeIndex (float4 *cubeValues , float isoValue)
{

3 int cubeIndex ;
cubeIndex = (cubeValues [0].w < isoValue);

5 cubeIndex += (cubeValues [1].w < isoValue) << 1;
cubeIndex += (cubeValues [2].w < isoValue) << 2;

7 /* ... */
cubeIndex += (cubeValues [7].w < isoValue) << 7;

9 return cubeIndex ;
}

Compacting

To overcome problem highlighted in section 5.4 a special compacting
operation is performed on arrays from previous step. First, a prefix-
sum array is computed in parallel on the GPU5 on voxelOccupied and

4All other LUTs are accessed this way as well. This partially mitigates one problem
described in section 5.4

5Implementation based on Harris, Sengupta, and Owens 2007, as included in
NVIDIA CUDA SDK

0
0

0
1

1
2

1
3

0
4

1
5

0
6

1
7

0 0 0 1 2 2 3 3

2 3 5 7

Figure 5.3: Example of compaction procedure. Index of each non empty
voxel is saved in compactedVoxelArray. Place to which index should be
stored is read from voxelOccupiedScan array.

46

https://developer.nvidia.com/cuda-downloads

5.4. Implementation on GPU with OpenCL

voxelVerts arrays resulting in voxelOccupiedScan and voxelVertsScan
arrays.

Definition 4 (Prefix-sum operation (Blelloch 1990)). Operation that takes
binary associative operator ⊕ with identity I and an array of n elements
[a0, a1, . . . , an−1] and returns the array [I, a0, (a0⊕ a1), . . . , (a0⊕ a1⊕ . . .⊕
an−2)]

This operation is sometimes called scan operation.

By reading the last elements of voxelOccupied and voxelOccupiedScan
and adding them, the number of voxels that will produce geometry can
be obtained. These voxels are called active voxels.

Thanks to voxel compaction, the most computation–intensive ker-
nel, i.e. generateTriangles kernel that generates final geometry can be
computed only for voxels that are not empty. Since in many cases, space
on which Marching Cubes is working is rather sparse, this approach can
bring enormous performance gains.

Let call the number of active voxels n. Compaction kernel creates
an array of length n that will contain indices of non empty voxels. For
illustration of this process refer to Figure 5.3.

Below is the code that performs the compaction.

__kernel
2 void compactVoxels (

__global uint * compactedVoxelArray ,
4 __global uint * voxelOccupied ,

__global uint * voxelOccupiedScan ,
6 uint numVoxels

)
8 {

uint i = get_global_id (0);
10 if(voxelOccupied [i] && (i < numVoxels)) {

compactedVoxelArray [voxelOccupiedScan [i]] =
i;

12 }
}

Scan operation on voxelVerts array gives generateTriangles kernel
an offset to the result array where data for given voxel should be written.
For an example refer to Figure 5.4.

47

5.4. Implementation on GPU with OpenCL

0 0 3 0 6 0 12

0 0 0 3 3 9 9 21

0 1 2 3 4 5 6 7 8 9 10

Figure 5.4: Scan operation on voxelVerts array gives indices to final
result array for every active voxel.

Generating triangles

Triangle generation is handled by generateTriangles kernel. It figures
out the number of voxel it’s working on from compactedVoxelArray.
Next, array in local memory is allocated for computing locations of ver-
tices and normal vectors on each of the 12 edges on the cube.

1 __local float4 vertList [12* NTHREADS];
__local float4 normList [12* NTHREADS];

Positions are calculated even though certain edges may not have sur-
face border on them. However, using if statement in kernel in this
context would cause divergence in execution of parallel threads.

From now on, algorithm is the same as in sequential version. List of
edges on which vertices lie is read from LUT mentioned in section 5.3.
This table is accessed as a 2D texture. Agressive caching strategy im-
plemented in GPUs for texture data access allows the kernel to retrieve
the data without much penalty. Positions of vertices and normals on
edges read from LUT are read from vertList and normList arrays, and
are written into result vertex position and normal arrays on indices read
from voxelVertsScan array.

48

Chapter 6

Programming project description

6.1 Introduction

Programming project of this thesis is a set of command line programs,
collectively called karstgen, that take the description of karst cave frac-
ture net and generate polygon mesh in simple and popular Wavefront
OBJ textual file format1.

Models created this way may be opened in 3D editing program for
further editing and examination.

Karstgen can also create models for Vorticity game engine that was
created by the author together with mr Michał Siejak for graphics re-
lated courses2 during licenciate studies at Adam Mickiewicz University
in Poznań.

6.2 Architecture

Karstgen was created with Unix Philosophy in mind (Raymond 2003).
It is made of two programs named blobber and mcblob that have clearly
defined responsibilities and communicate through simple textual data
format. Both programs may take input either from files or from stan-
dard input so they can be piped together with shell pipes. Data flow of
karstgen is presented in Figure 6.1.

1http://www.martinreddy.net/gfx/3d/OBJ.spec
2Computer Graphics and Visualiation, summer semester 2009/2009 and Group

Project, summer semester 2009/2010

49

http://www.martinreddy.net/gfx/3d/OBJ.spec

6.3. Implementation details

Fracture data

converter blobber mcblob

OBJ file

AVR file

Figure 6.1: Data flow of karstgen program. Converter part is required
when fracture net description is other than expected by blobber.

Blobber

Blobber takes description of a fracture net in a simple textual format
and generates list of metaballs (see Equation 6.3). It can optionally tilt
positions and sizes of metaballs in random but adjustable manner for
more natural–looking results. Blobber also controls quality of the final
geometry. For information about runtime parameters invoke:

./blobber --help

Mcblob

Output generated by blobber is consumed by program named mcblob3

which is general purpose tool that may be used to generate geome-
try from a list of metaballs in 3D space through OpenCL–accelerated
Marching Cubes algorithm.

6.3 Implementation details

Metaballs

Implementation heavily relies on rendering with metaballs. Metaball in
3D space is a scalar function in the form (Blinn 1982, p. 4):

f (x, y, z) = Te
B

R2 r2−B (6.1)
3Marching Cubes from blobs

50

6.3. Implementation details

where r is distance from point (x, y, z) to the centre of the metaball, B is
„blobiness” factor that controls tendency to „melt” with other metaballs,
T is isovalue that will be used for rendering and R is the radius of the
metaball if it was isolated from other blobs. This equation is basically a
Gaussian bump with expected value in the middle of the metaball.

If more than one metaball is present in the scene, density function
(see Definition 1) is in the form:

d(x, y, z) =
n

∑
i=0

fi(x, y, z) (6.2)

where n is the total number of metaballs in the scene and fi is func-
tion 6.1 of the i-th metaball.

Metaballs were discovered by Jim Blinn during his work on visualisa-
tion of molecular structures (Blinn 1982). Density function was derived
from equation defining density of electron field of hydrogen atom as
used in quantum mechanics.

This „melting” property visible when metaballs are close to each
other gives somewhat „organic” look and feel of structures generated
with them (see Figure 6.2).

Figure 6.2: Two metaballs at various distances showing how they are
„melting” together when getting closer to each other. Geometry was
generated with mcblob program and final image was rendered with
Blender 2.68 with Cycles renderer. Input file for mcblob that gener-
ates this model is included with the thesis in file fig_metaballs.in in
kartsgen examples.

Overview

Both blobber and mcblob are implemented in C++ language with latest
C++11 version of the standard. Build system used to compile the code is

51

6.3. Implementation details

CMake4 – meta build system that can generate native projects for various
IDEs5 and actual build systems. Executables use Boost Program Options
library for parsing command line arguments and providing help.

Karstgen uses unit testing framework Google Test6. Documentation is
automatically generated from sources with Doxygen tool.

Blobber

For vector data structures blobber uses GLM7 – a mathematical library
that resembles GLSL8.

It reads information about diameters of fractures in fractures net-
work and places blobs along these fractures with diameters roughly the
same as of these fractures.

Blobber works on data structure named DataPoint:

struct DataPoint
2 {

int x, y, z;
4 float midDiam ;

std :: vector <float > xData;
6 std :: vector <float > yData;

std :: vector <float > zData;
8 };

This structure can describe three fractures originating in index (x, y, z)
in the fracture net and going along each axe in ascending direction. Each
fracture is described as a vector of uniformly distributed diameters. If
there is only one diameter in a vector it is assumed that the fraction
it represents has the same diameter along its whole length. When no
diameters are present in some vector, it is assumed that there is no frac-
ture in this direction. Additional field midDiam is a diameter of blob
that should be placed in the intersection of the three fractures (see Fig-
ure 6.3).

4Cross–platform make
5Integrated Development Environment
6http://code.google.com/p/googletest/
7http://glm.g-truc.net/0.9.4/index.html
8OpenGL Shading Language

52

http://code.google.com/p/googletest/
http://glm.g-truc.net/0.9.4/index.html

6.3. Implementation details

Data points are packed into a structure representing whole fracture
network called FractureNet:

struct FractureNet
2 {

// size of net in number of dataPoints
4 int x; int y; int z;

6 // length of single fracture in each direction
float xLen; float yLen; float zLen;

8

std ::map <std :: tuple <int , int , int >, DataPoint >
dataPoints ;

10 };

Since fracture net is usually quite sparse, dictionary structure9 is
used to store data points instead of array or vector. Keys in this dic-
tionary are tuples containing 3D index in a fracture net. This way, given
one data point it is easy to find its neighbours.

9std::map from C++’s Standard Template Library

z

x

y

zData

xData

yData

– diameter at intersection

– diameters along fractures

Figure 6.3: Graphical representation of DataPoint – a basic structure that
blobber works on. In this example, there are 4 diameters in x direction,
2 in z direction and 8 in y direction.

53

6.3. Implementation details

Placement of blobs

Blobber works on one data point at a time through blobsFromData-
Point() function. First, one point is placed in the intersection of the
axes with diameter equal to midPointDiam. Then, vector for each non–
empty axe is processed by blobsOnVector() function. Besides the vector
of diameters, this function takes midPointDiam of the data point, and
optionally nextDpMidDiam which is midPointDiam of the next data point
along this axis if such data point exists. Fast lookup of next data point
is possible thanks to dictionary storage of data points. If there is no
neighbour data point at the end of the axis, nextDpMidDiam is considered
to be 0.

midPointDiam d0 d1 dn−1 dn nextDpMidDiam

b1

Figure 6.4: Blobs are placed along fracture defined as set of diameters
(d0, d1, · · · , dn−1). In this example diameter of blob b1 will be a linear
interpolation of diameters d0 and d1 proportional to distance from these
diameters.

Function blobsOnVector() places blobs on the fracture line until it’s
fully covered. Diameters of blobs are determined in a way described in
Figure 6.4.

Format of the input to blobber is described in generated documenta-
tion:
\doc\ blobber \html\index.html

Output format is the same as input format of mcblob program and
is described in its help:
./ mcblob --help

Mcblob

Mcblob uses OpenCL (chapter 4) to calculate density function from
list of blobs provided in input, generates polygon mesh of isosurface
definded by this function using Marching Cubes algorithm (chapter 5)
accelerated with OpenCL and saves results to file in one of two formats.

54

6.3. Implementation details

x

y

z

Figure 6.5: In this configuration, domain is divided into 2× 2× 2 = 8
grids (blocks), and each one of them consists of 8× 8× 8 = 512 voxels
totalling 512× 8 = 4096 voxels.

Bounds of 3D space within which geometry will be generated is de-
fined in input. It’s divided into blocks which are worked on one at a
time. For each block, density function is calculated from blobs, followed
by generating geometry.

Finally, when geometry from all blocks is calculated, mcblob writes
output to disk in one of two supported formats.

Calculating density function

Each block of voxels is kept by mcblob in a class called Grid. It contains
values of density function on the vertices of the cubes in a block. These
values are stored as one–dimensional array, that is transferable between
host and device memory. If numbers of voxels on axes x, y and z are vx,
vy and vz respectively, Grid will store 1D array of float4 values that is
(vx + 1)× (vy + 1)× (vz + 1) elements long.

Four floats are kept for each vertex instead of one to facilitate com-
putation of normal vectors. In case of Grid components x, y and z store
density function values in positions shifted by small value along re-

55

6.3. Implementation details

spective axes – a gradient of density function in position of the vertes.
Finally, w component stores value at the vertex itself.

Density function of a set of blobs is calculated by method:

Blob :: runBlob ()

that adds array of blobs to the grid according to Equation 6.2. For better
performance, this method utilizes constant memory. Device is queried
for size of constant memory via cl::Device::getInfo(). As mentioned
in chapter 4 constant memory is efficient for data that is simultaneously
accessed by many threads. In case of Blob program, every thread iterates
over all blobs. If size of blob data exceeds constant memory size, input
is divided into packages that are within the limit, and kernel is simply
invoked multiple times, until all blobs are processed.

This method of implementation was inspired by MRI10 reconstruc-
tion program for CUDA described in Kirk and Hwu 2010, in chapter 8.

Generating geometry

When density function of all blobs is calculated for a single grid, such
grid is submitted to:

MarchingCubes :: compute ()

method that runs OpenCL–powered Marching Cubes implementation
(see section 5.4). Once the geometry for all blocks is generated, it’s
passed to one of two exporter functions that write the results to disk in
format selected by the user. Wavefront OBJ output can be imported by
virtually every 3D graphics software and AVR can be read by aforemen-
tioned Vorticity game engine.

Using blobber and mcblob together

Blobber and mcblob are naturally fit to be executed in shell via pip-
ing. To run karstgen with provided examples, go to folder where it was
compiled and type:

cat [input] | ./ blobber | ./ mcblob -o out.obj

Where [input] is path to a file with description of fracture net. Exam-
ples are located in examples\blobber. This will generate out.obj file
that can be imported to 3D graphics program.

10Magnetic resonance imaging

56

6.4. Example outputs

To randomly disturb positions of blobs by 15% and sizes by 10% of
their diameter, invoke karstgen in the following manner:

cat [input] | ./ blobber -p 15 -s 10 | ./ mcblob -o out.obj

6.4 Example outputs

Below are screenshots of outputs of karstgen with references to input
files used to produce them.

Figure 6.6: Rendering of result of simulation generated by
KARSTAQUIFER tool (Kaufmann 2009). Input data file courtesy of Mr
Thomas Hiller PhD from Free University of Berlin. Available in file
examples\blobber\hiller.in. Be advised, that due to very large do-
main, computations done by karstgen may take several hours. Figure
rendered with Blender renderer.

57

6.4. Example outputs

Figure 6.7: Render of synthetic blobber input file created by au-
thor. Rendered with Blender Cycles renderer. Input file available at
examples\blobber\synthetic.in

58

6.4. Example outputs

Figure 6.8: Interior of the cave generated for Figure 6.7. Rendered with
Blender renderer.

59

Chapter 7

Conclusions and further work

Programming project accompanying this thesis, called karstgen, provides
usable way to represent karst simulation data as a three–dimensional
polygon mesh. It consumes data that is similar in structure to formats
used as output of these simulations. Since karstgen is able to produce
models in popular OBJ file format, its results can be imported by most
3D modelling software suites for further modifications and examina-
tions.

Method of geometry generation through placing of blobs along an
aquifer fractures and rendering them with Marching cubes proved to
yield positive visual results. Possibility of adding randomness to gen-
erated meshes helps in achieving visually pleasing (Figure 6.8) meshes
that could be used in e.g. video games. Given simplicity of karstgen
input file format it would be easy to write application aimed at artist
that could be used for creating caved terrains by providing input data
to karstgen.

To increase performance, karstgen uses OpenCL (see chapter 4) to
accelerate computations on GPU. With multi–vendor support for this
standard, it is highly probable, that OpenCL will be supported in the
future.

7.1 Possible development of karstgen

Right now, karstgen produces only the primary geometry of fracture
network based on diameters. To create more realistically–looking out-
put, microstructure of the cave wall would have to be introduced by e.g.
bump mapping.

60

7.1. Possible development of karstgen

No material data of cave walls is generated. Karstgen produces only
the mesh which can be later textured in external program. Additional
data, like amount of water flowing through fracture or calcium concen-
tration, that could be passed to blobber and later to mcblob by simula-
tion software could be helpful in procedural material generation.

Because Marching Cubes algorithm is executed independently for
every voxel in the domain, almost all1 vertices are created twice. Adja-
cent voxel don’t know about each other, and don’t share vertices. Mesh
created this way is larger than needed. Additional step that removes
doubled vertices could be introduced2.

Even though computation is accelerated with GPU, rendering of
large dataset could be very time–consuming. As described in section 6.3
each block is computed independently. In current implementation, data
for one block is roughly 10MB in size. It’s constrained mainly by abili-
ties of GPU implementation of prefix sum algorithm that limits size of
single block to 64× 64× 64 voxels. With modern GPUs having at least
1GB of video ram, many more blocks could be uploaded to GPU and
their synchronization could by coordinated by OpenCL event mecha-
nism. This could reduce context–switching significantly. Also, density
function calculation could be greatly shortened. Typically, metaballs that
are far from currently calculated location have little or no impact on the
density function. That is why domain could be partitioned into chunks
in which only relevant metaballs are taken into account. To further im-
prove performance some other, possibly less computationally expensive
function with similar characteristics could be used for single metaball
than one showed in Equation 6.2.

1Except the ones on the boundary of the domain
2Such functionality is available in e.g. Blender

61

Bibliography

Annable, William K. (2003). “Numerical Analysis of Conduit Evolution
in Karstic Aquifers”. Ph.D. University of Waterloo (cit. on p. 16).

Aylward, Gordon H. and Tristan John Victor Findlay (2008). SI Chemical
Data. John Wiley & Sons Australia, Limited. isbn: 9780470816387 (cit.
on p. 13).

Blelloch, Guy E. (Nov. 1990). Prefix Sums and Their Applications. Tech.
rep. CMU-CS-90-190. School of Computer Science, Carnegie Mellon
University (cit. on p. 47).

Blinn, James F. (July 1982). “A Generalization of Algebraic Surface Draw-
ing”. In: ACM Trans. Graph. 1.3, pp. 235–256. issn: 0730-0301. url:
http://doi.acm.org/10.1145/357306.357310 (cit. on pp. 50, 51).

Buhmann, Dieter and Wolfgang Dreybrodt (1985a). “The kinetics of cal-
cite dissolution and precipitation in geologically relevant situations
of karst areas: 1. Open system”. In: Chemical Geology 48.1–4, pp. 189 –
211. issn: 0009-2541. url: http://www.sciencedirect.com/science/
article/pii/0009254185900464 (cit. on p. 15).

— (1985b). “The kinetics of calcite dissolution and precipitation in ge-
ologically relevant situations of karst areas: 2. Closed system”. In:
Chemical Geology 53.1–2, pp. 109 –124. issn: 0009-2541. url: http://
www.sciencedirect.com/science/article/pii/0009254185900245
(cit. on p. 15).

Dreybrodt, Wolfgang and Franci Gabrovšek (2002). “Basic processes and
mechanisms governing the evolution of karst”. In: Evolution of karst:
from prekarst to cessation. Coronet Books (cit. on pp. 13, 16).

Fairchild, Ian J. and Andy Baker (2012). Speleothem Science: From Process
to Past Environments. Blackwell Quaternary Geoscience Series. John
Wiley & Sons. isbn: 9781444361063 (cit. on p. 14).

Field, Malcolm S. (2002). A Lexicon of Cave and Karst Terminology with
Special Reference to Environmental Karst Hydrology. United States Envi-
ronmental Protection Agency (cit. on pp. 9, 10).

62

http://doi.acm.org/10.1145/357306.357310
http://www.sciencedirect.com/science/article/pii/0009254185900464
http://www.sciencedirect.com/science/article/pii/0009254185900464
http://www.sciencedirect.com/science/article/pii/0009254185900245
http://www.sciencedirect.com/science/article/pii/0009254185900245

Bibliography

Fletcher, Dan (June 2010). Massive Sinkhole Opens in Guatemala City. url:
http://newsfeed.time.com/2010/06/01/giant-sinkhole-opens-
in-guatemala-city/ (cit. on p. 12).

Ford, Derek C. and Paul Williams (2007). Karst Hydrogeology and Geomor-
phology. John Wiley & Sons. isbn: 9780470060056 (cit. on p. 6).

Visualizing Large Procedural Volumetric Terrains Using Nested Clip-Boxes
(2005). SIGGRAPH 2005 (cit. on p. 17).

Gaster, B. et al. (2012). Heterogeneous Computing with OpenCL: Revised
OpenCL 1.2 Edition. Elsevier Science. isbn: 9780124055209 (cit. on
pp. 19, 25, 26, 30, 35).

Geiss, Ryan (2007). “Generating Complex Procedural Terrains Using the
GPU”. In: Nguyen, Hubert. Gpu gems 3. First. Addison-Wesley Pro-
fessional. Chap. 1. isbn: 9780321545428 (cit. on pp. 16, 39).

Golscheider, Nico and David Drew (2007). Methods in Karst hydrogeology.
IAH international contributions to hydrogeology. Taylor & Francis
Group. isbn: 9780415428736 (cit. on p. 12).

Gummaraju, Jayanth et al. (2010). “Twin peaks: a software platform for
heterogeneous computing on general-purpose and graphics proces-
sors”. In: Proceedings of the 19th international conference on Parallel ar-
chitectures and compilation techniques. ACM, pp. 205–216 (cit. on p. 32).

Harris, Mark, Shubhabrata Sengupta, and John D. Owens (2007). “Par-
allel Prefix Sum (Scan) with CUDA”. In: Nguyen, Hubert. Gpu gems
3. First. Addison-Wesley Professional. Chap. 39. isbn: 9780321545428
(cit. on p. 46).

Hill, Carol A. and Paolo Forti (1997). Cave Minerals of the World. t. 2.
National Speleological Society. isbn: 9781879961074 (cit. on p. 10).

Hiller, Thomas (2013). “Modelling the Evolution of Karst Aquifers in
Three Dimensions”. Ph.D. Free University of Berlin (cit. on pp. 15–
17).

Holland, H.D., T.V. Kirsipu, and U.M. Oxburgh (1964). “On some aspects
of the chemical evolution of cave waters”. In: Journal of Geology 72 (cit.
on p. 14).

Kaufmann, Georg (2003). “Numerical models for mixing corrosion in
natural and artificial karst environments”. In: Water Resources Re-
search 39.6, n/a–n/a. issn: 1944-7973. url: http : / / dx . doi . org /
10.1029/2002WR001707 (cit. on p. 16).

— (2009). “Modelling karst geomorphology on different time scales”.
In: Geomorphology 106.1–2, pp. 62 –77. issn: 0169-555X. url: http://

63

http://newsfeed.time.com/2010/06/01/giant-sinkhole-opens-in-guatemala-city/
http://newsfeed.time.com/2010/06/01/giant-sinkhole-opens-in-guatemala-city/
http://dx.doi.org/10.1029/2002WR001707
http://dx.doi.org/10.1029/2002WR001707
http://www.sciencedirect.com/science/article/pii/S0169555X08004091
http://www.sciencedirect.com/science/article/pii/S0169555X08004091

Bibliography

www.sciencedirect.com/science/article/pii/S0169555X08004091
(cit. on pp. 16, 17, 57).

Kaufmann, Georg, Douchko Romanov, and Thomas Hiller (2010). “Mod-
eling three-dimensional karst aquifer evolution using different matrix-
flow contributions”. In: Journal of Hydrology 388.3–4, pp. 241 –250.
issn: 0022-1694. url: http://www.sciencedirect.com/science/
article/pii/S0022169410002441 (cit. on p. 16).

Kipfer, Peter and Rüdiger Westermann (Mar. 13, 2005). “Improved GPU
Sorting”. In: Nguyen, Hubert. Gpu gems 2. Addison-Wesley Profes-
sional. Chap. 1. isbn: 978-0321335593 (cit. on p. 21).

Kirk, David B. and Wen-mei W. Hwu (2010). Programming Massively Par-
allel Processors: A Hands-on Approach. 1st. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. isbn: 0123814723, 9780123814722
(cit. on pp. 19, 56).

Kolb, A., L. Latta, and C. Rezk-Salama (2004). “Hardware-based simu-
lation and collision detection for large particle systems”. In: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. HWWS ’04. Grenoble, France: ACM, pp. 123–131. isbn: 3-
905673-15-0. url: http://doi.acm.org/10.1145/1058129.1058147
(cit. on p. 31).

Lorensen, William E. (2007). Marching Cubes - MC Wiki. Website main-
tained by co-author of Marching cubes algorithm. url: http://www.
marchingcubes.org/index.php/Marching_Cubes (cit. on p. 40).

Lorensen, William E. and Harvey E. Cline (Aug. 1987a). “Marching cubes:
A high resolution 3D surface construction algorithm”. In: SIGGRAPH
Comput. Graph. 21.4, pp. 163–169. issn: 0097-8930. url: http://doi.
acm.org/10.1145/37402.37422 (cit. on pp. 40, 41).

— (Dec. 1, 1987b). “System and method for the display of surface struc-
tures contained within the interior region of a solid body”. US 4710876
A. General Electric Company (cit. on p. 41).

Marshak, Stephen (2007). Earth: Portrait of a Planet. 3rd ed. W. W. Norton
& Company (cit. on p. 11).

Migoń, Piotr (2010). Geomorphological Landscapes of the World (cit. on p. 9).
Munshi, Aaftab, ed. (2012). The OpenCL Specification, version 1.2. Khronos

OpenCL Working Group. url: http://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf (cit. on pp. 28, 29).

NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2009). Whitepa-
per. NVIDIA Corporation. url: http://www.nvidia.com/content/

64

http://www.sciencedirect.com/science/article/pii/S0169555X08004091
http://www.sciencedirect.com/science/article/pii/S0169555X08004091
http://www.sciencedirect.com/science/article/pii/S0022169410002441
http://www.sciencedirect.com/science/article/pii/S0022169410002441
http://doi.acm.org/10.1145/1058129.1058147
http://www.marchingcubes.org/index.php/Marching_Cubes
http://www.marchingcubes.org/index.php/Marching_Cubes
http://doi.acm.org/10.1145/37402.37422
http://doi.acm.org/10.1145/37402.37422
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Bibliography

PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf (cit. on p. 35).

Plummer, L. N., T. M. L. Wigley, and D. L. Parkhurst (1978). “The kinet-
ics of calcite dissolution in water systems at 5◦C to 60◦C and 0.0 to
1.0 atm CO2”. In: American Journal of Science (cit. on p. 13).

Raymond, Eric Steven (2003). The Art of UNIX Programming. Addison-
Wesley professional computing series. Pearson Education. isbn: 9780132465885
(cit. on p. 49).

65

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

	Contents
	Introduction
	Structure of the thesis

	Karst and karstification process
	Introduction
	Basics
	Definitions
	Elements of karst landscape

	Overview of the karstification process
	Limestone dissolution
	Formation of speleothems

	Related work
	Modelling karst aquifers
	Single fracture simulation
	Two–dimensional simulations
	Three–dimensional simulations

	Visualisation techniques
	Surveying software

	OpenCL heterogenous programming platform
	Introduction
	Beginnings of programmable GPUs
	Early attempts at GPGPU
	CUDA
	Inception of OpenCL

	Specification

	Logical abstraction of computational resources
	Platforms
	Devices

	Memory model
	Host–side memory model
	Device–side memory model

	Execution model
	Context
	Programs and Kernels
	Supplying arguments to kernels

	Command queues
	Workgroups and threads

	Events and device–side relaxed consistency
	Typical execution flow

	Implementation on selected hardware
	OpenCL on AMD FX–8150 Bulldozer CPU
	Mapping to OpenCL logical hierarchy
	Execution model

	OpenCL on NVIDIA GTX580
	Architecture
	Mapping to OpenCL logical hierarchy
	Execution model
	Pitfalls of OpenCL programming on GPU

	Isosurface extraction with Marching Cubes
	Definitions
	Rationale for isosurface rendering
	Marching Cubes algorithm overview
	History mchist
	Algorithm description Lorensen:1987:MCH:37402.37422
	Cube indexing
	Emitting polygons

	Implementation on GPU with OpenCL
	Stages in GPU implementation
	Voxel classification
	Compacting
	Generating triangles

	Programming project description
	Introduction
	Architecture
	Blobber
	Mcblob

	Implementation details
	Metaballs
	Overview
	Blobber
	Placement of blobs

	Mcblob
	Calculating density function
	Generating geometry

	Using blobber and mcblob together

	Example outputs

	Conclusions and further work
	Possible development of karstgen

	Bibliography

